Text Conditional MAISI Inference: 5%|▌ | 5/100 [05:15<1:39:52, 63.08s/it]
Traceback (most recent call last):
File "/opt/app/process.py", line 263, in <module>
main()
File "/opt/app/process.py", line 211, in main
data = run_inference(
^^^^^^^^^^^^^^
File "/opt/app/TextMAISI/model_utils.py", line 175, in run_inference
raise e
File "/opt/app/TextMAISI/model_utils.py", line 142, in run_inference
model_output = unet(**unet_inputs)
^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/monai/apps/generation/maisi/networks/diffusion_model_unet_maisi.py", line 400, in forward
h, _updated_down_block_res_samples = self._apply_down_blocks(h, emb, context, down_block_additional_residuals)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/monai/apps/generation/maisi/networks/diffusion_model_unet_maisi.py", line 344, in _apply_down_blocks
h, res_samples = downsample_block(hidden_states=h, temb=emb, context=context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/monai/networks/nets/diffusion_model_unet.py", line 764, in forward
hidden_states = attn(hidden_states, context=context).contiguous()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/monai/networks/nets/diffusion_model_unet.py", line 232, in forward
x = block(x, context=context)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/monai/networks/nets/diffusion_model_unet.py", line 120, in forward
x = self.attn2(self.norm2(x), context=context) + x
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/monai/networks/blocks/crossattention.py", line 152, in forward
k = self.input_rearrange(self.to_k(kv))
^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/output/venv/lib/python3.12/site-packages/torch/nn/modules/linear.py", line 125, in forward
return F.linear(input, self.weight, self.bias)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: expected mat1 and mat2 to have the same dtype, but got: double != c10::Half